On Intrinsically Random Z²-Actions on a Lebesgue Space

M. Courbage¹ and B. Kamiński²

Received August 14, 2002; accepted January 24, 2003

It is shown that a \mathbb{Z}^2 -action on a Lebesgue space is intrinsically random (*IR*) iff it is a Kolmogorov action (*K*-action). As a consequence we obtain the fact that the \mathbb{Z}^2 -action defined by the Lorentz gas is an *IR*-action and the \mathbb{Z}^2 -action defined by the ideal gas is not an *IR*-action.

KEY WORDS: Intrinsical randomness; Kolmogorov \mathbb{Z}^2 -actions.

1. INTRODUCTION

The concept of a weak (strong) intrinsically random \mathbb{Z}^2 -action on a Lebesgue space has been introduced in ref. 2 and it is shown that any Kolmogorov (Bernoulli) \mathbb{Z}^2 -action is intrinsically weak (strong) random.

An important role in the definition of an intrinsically random (weak and strong) action is played by a continuity condition (the condition (b) of Definition 2 in ref. 2) which has no corresponding analogue in the case of intrinsically random \mathbb{Z} -actions.

It was a natural question whether an intrinsically random (weak or strong) \mathbb{Z}^2 -action is a K-action.

In this paper we first modify our definition of an *IWR*-action in a similar way as in ref. 4 (for \mathbb{Z} -actions). By this we replace the continuity condition by a more natural one. We call the actions obtained thereby as intrinsically random.

The main result of our paper says that the class of *IR*-actions coincides with the class of *K*-actions.

¹ Laboratoire de Physique Théorique de la Matière Condenseé, Université Paris VII, 75251 Paris Cedex 05, France.

² Faculty of Mathematics and Computer Science, Nicholas Copernicus University, 87-100 Toruń, Poland; e-mail: bkam@mat.uni.torun.pl

Goldstein has shown in ref. 3 that the \mathbb{Z}^2 -action defined by the Lorentz gas is a *K*-system and that the \mathbb{Z}^2 -action defined by the ideal gas has zero entropy.

Thus from our result follows that the first \mathbb{Z}^2 -action is an *IR*-action and the second is not an *IR*-action.

2. RESULT

Let (X, \mathcal{B}, μ) be a Lebesgue probability space and let \mathcal{N} denote the trivial σ -algebra of X. Let $\mathcal{D} \subset L^2(X, \mu)$ stand for the set of all densities, i.e., measurable functions $f \ge 0$ with $\int_X f d\mu = 1$.

We denote by \mathbb{Z}^2 the group of two-dimensional integers. Let \prec be the lexicographical order of \mathbb{Z}^2 and let $\Pi(N)$ stand for the set of positive (negative) vectors of \mathbb{Z}^2 with respect to \prec .

Let Φ be a \mathbb{Z}^2 -action on (X, \mathcal{B}, μ) , i.e., Φ is a homomorphism of \mathbb{Z}^2 into the group Aut (X, μ) of all measure-preserving automorphisms of (X, \mathcal{B}, μ) .

We denote by Φ^g the automorphism of (X, \mathcal{B}, μ) , being the image of $g \in \mathbb{Z}^2$ under Φ .

Let $U = U_{\phi}$ be the Koopman unitary representation of \mathbb{Z}^2 in $L^2(X, \mu)$ defined by the formula

$$U^{g}f = f \circ \Phi^{g}, \qquad f \in L^{2}(X, \mu), \qquad g \in \mathbb{Z}^{2}.$$

For a given σ -algebra $\mathscr{A} \subset \mathscr{B}$ and a function $f \in L^1(X, \mu)$, we denote by $E^{\mathscr{A}}f$ the conditional expectation of f given \mathscr{A} . In particular, we put

$$Ef = E^{\mathcal{N}}f = \int_X f \, d\mu.$$

We shall use in the sequel the following well known property of conditional expectations.

$$U_T \circ E^{\mathscr{A}} = E^{T^{-1}\mathscr{A}} \circ U_T \tag{1}$$

where $T \in Aut(X, \mu)$ and U_T is the Koopman unitary operator associated with T.

For a given finite measurable partition ξ of X, we denote by $h(\xi, \Phi)$ the mean entropy of ξ with respect to Φ and by $h(\Phi)$ the entropy of Φ .⁽¹⁾

Now we recall the definition of a K-action of \mathbb{Z}^2 on a Lebesgue space.⁽⁷⁾

An ordered pair (A, B) of subsets of \mathbb{Z}^2 is said to be *a cut* if they form a non-trivial partition of \mathbb{Z}^2 and for every $g \in A$ and $h \in B$ we have $g \prec h$.

A cut (A, B) is called a gap if A does not contain a greatest element and B does not contain a lowest element.

Definition 1. A \mathbb{Z}^2 -action Φ is said to be a *K*-action if there exists a σ -algebra $\mathscr{A} \subset \mathscr{B}$ with

(i) $\Phi^g \mathscr{A} \subset \mathscr{A}$ for every $g \in N$,

(ii) the family $(\Phi^{g}\mathcal{A}, g \in \mathbb{Z}^{2})$ is continuous, i.e., for every gap (A, B) of \mathbb{Z}^{2} it holds

$$\bigvee_{g \in A} \Phi^g \mathscr{A} = \bigcap_{g \in B} \Phi^g \mathscr{A},$$

(iii) $\bigvee_{g \in \mathbb{Z}^2} \Phi^g \mathscr{A} = \mathscr{B},$

(iv)
$$\bigcap_{g \in \mathbb{Z}^2} \Phi^g \mathscr{A} = \mathscr{N}.$$

A σ -algebra \mathscr{A} satisfying (i)–(iv) is called a K- σ -algebra.

It has been shown in ref. 7 that Φ is a K-action iff Φ has a completely positive entropy, i.e., $h(\xi, \Phi) > 0$ for every non-trivial finite measurable partition ξ of X and in ref. 6 that Φ is a K-action iff Φ is K-mixing.

Definition 1 can be rewritten in a more clear form, by the use of automorphisms $T = \Phi^{(1,0)}$ and $S = \Phi^{(0,1)}$ generating Φ , as follows

(i') $S^{-1}\mathscr{A} \subset \mathscr{A}, T^{-1}\mathscr{A}_S \subset \mathscr{A}$ where $\mathscr{A}_S = \bigvee_{n=-\infty}^{\infty} S^n \mathscr{A},$

(ii')
$$\bigcap_{n=-\infty}^{+\infty} S^n \mathscr{A} = T^{-1} \mathscr{A}_S,$$

(iii')
$$\bigvee_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \mathscr{B},$$

(iv') $\bigcap_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \mathscr{N}.$

For any linear operator U of $L^2(X, \mu)$ we denote by ker U the kernel of U.

A linear operator W of $L^2(X, \mu)$ is said to be doubly stochastic if it is positive, W1 = 1 and $E \circ W = E$, i.e., if it is a Markov operator preserving μ .

For a function f defined on Π and taking values in some linear normed space we write

 $f(g) \rightarrow x$ as $g \rightarrow +\infty$

if for any $\varepsilon > 0$ there exists $g_0 \in \Pi$ with $||f(g) - x|| < \varepsilon$ for all $g > g_0$.

Definition 2. We say that a generalized sequence $(W^g, g \in \Pi)$ of linear operators of $L^2(X, \mu)$ tends to equilibrium if it is a semigroup, all operators W^g , $g \in \Pi$ are doubly stochastic, for any $f \in \mathcal{D}$ the sequence $(||W^g f - 1||, g \in \Pi)$ is nonincreasing and $W^g f \to 1$ as $g \to +\infty$.

Definition 3. A \mathbb{Z}^2 -action Φ is called an *IR*-action if there exists an operator *P* of $L^2(X, \mu)$ and a sequence $(W^g, g \in \Pi)$ tending to equilibrium such that

- (a) *P* is a positive projection,
- (b) P1 = 1,
- (c) $\bigcap_{g \in \mathbb{Z}^2} \ker P \circ U^g = \{0\},\$
- (d) for any $f \in L^2(X, \mu)$ and $m \in \mathbb{Z}$ we have

$$\lim_{n \to \infty} \| U^{(m,n)} \circ W^{(m,n)} f - U^{(m+1,-n)} \circ W^{(m+1,-n)} f \| = 0,$$

(e) for any $g \in \Pi$ the following diagram commutes:

$$\begin{array}{c} L^{2}(X, \mu) \xrightarrow{P} L^{2}(X, \mu) \\ \xrightarrow{U^{-g}} & \downarrow^{W^{g}} \\ L^{2}(X, \mu) \xrightarrow{P} L^{2}(X, \mu). \end{array}$$

It is easy to check that if Φ is an *IR*-action then it is intrinsically weak random in the sense of Definition 2 from ref. 2.

Remark 1. It is easy to see that the property of the intrinsical randomness is preserved if we pass from the ordered basis (e_1, e_2) , $e_1 = (1, 0)$, $e_2 = (0, 1)$ to another one (e'_1, e'_2) by an automorphism A of \mathbb{Z}^2 which preserves the lexicographical order, i.e., the associated matrix of which is of the form $\begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$ where $r \in \mathbb{Z}$.

Theorem. A \mathbb{Z}^2 -action Φ is an *IR*-action iff it is a *K*-action.

Proof. Necessity. It has been shown in ref. 4 that (a) and (b) imply that P is strictly positive and so, by Corollary 3.4 to the representation theorem from ref. 5, the operator P is in fact a conditional expectation operator with respect to some σ -algebra \mathscr{A} , i.e., $P = E^{\mathscr{A}}$.

We claim that \mathscr{A} is a *K*- σ -algebra for Φ .

Let $\mathscr{A}_g = \Phi^g \mathscr{A}$ and let $P^g = E^{\mathscr{A}_g}, g \in \mathbb{Z}^2$.

Applying the equality (1) it is easy to see that

$$P^{g} = U^{-g} \circ P \circ U^{g}, \qquad g \in \mathbb{Z}^{2}.$$
⁽²⁾

In order to check (i) it is enough to show that $P^g \circ P = P^g$ for any $g \in N$.

It follows from (2) and (e) that

$$P^{g} \circ P = U^{-g} \circ P \circ U^{g} \circ P = U^{-g} \circ W^{-g} \circ P^{2}$$
$$= U^{-g} \circ W^{-g} \circ P = U^{-g} \circ P \circ U^{g} = P^{g}.$$

Now we check (ii') instead of (ii). Let $f \in L^2(X, \mu)$ be $\bigcap_{n=0}^{\infty} S^{-n} \mathscr{A}$ -measurable. Hence it is of course \mathscr{A} -measurable, i.e., Pf = f.

It follows from (e) and (2) that

$$\begin{split} \|U^{(0,n)} \circ W^{(0,n)} f - U^{(1,-n)} \circ W^{(1,-n)} f \| \\ &= \|U^{(0,n)} \circ W^{(0,n)} \circ P f - U^{(1,-n)} \circ W^{(1,-n)} \circ P f \| \\ &= \|U^{(0,n)} \circ P \circ U^{-(0,n)} f - U^{(1,-n)} \circ P \circ U^{-(1,-n)} f \| \\ &= \|P^{-(0,n)} f - P^{-(1,-n)} f \| \\ &= \|E^{S^{-n} \mathscr{A}} f - E^{T^{-1} S^{n} \mathscr{A}} f \|, \qquad n \ge 1. \end{split}$$

Hence taking the limit as $n \to \infty$ and applying (d) and the Doob martingale convergence theorem we get

$$E^{\bigcap_{n=0}^{\infty}S^{-n}\mathscr{A}}f=E^{T^{-1}\mathscr{A}_{S}}f.$$

It follows from our assumption that the left hand side is equal to f and so

$$f = E^{T^{-1}\mathscr{A}_S} f,$$

i.e., f is $T^{-1}\mathscr{A}_S$ -measurable. This means that (ii') and so (ii) is satisfied. In order to prove (iii) we put

$$\mathscr{A}_{\infty} = \bigvee_{g \in \mathbb{Z}^2} \mathscr{A}_g.$$

Let $f \in L^2(X, \mu) \ominus L^2(X, \mathscr{A}_{\infty}, \mu)$, i.e., f is orthogonal to all subspaces $L^2(X, \mathscr{A}_g, \mu), g \in \mathbb{Z}^2$.

Let $g \in \mathbb{Z}^2$ be arbitrary. Thus for every $\varphi \in L^2(X, \mu)$ we have

$$0 = (f, P^g \varphi) = (P^g f, \varphi).$$

Therefore $P^{g}f = 0$ and so (2) gives

$$U^{-g} \circ P \circ U^g f = 0, \qquad g \in \mathbb{Z}^2.$$

Hence

$$P \circ U^g f = 0, \qquad g \in \mathbb{Z}^2$$

and thus (c) implies f = 0.

This means that

$$L^{2}(X, \mu) = L^{2}(X, \mathscr{A}_{\infty}, \mu),$$

i.e., (iii) is true.

Let $\mathscr{A}_{-\infty} = \bigcap_{g \in \mathbb{Z}^2} \mathscr{A}_g$ and let $f \in L^2(X, \mu)$ be $\mathscr{A}_{-\infty}$ -measurable. In order to check (iv) it is enough to show that f is constant.

Since $f = \max(f, 0) - \max(-f, 0)$ we may assume $f \ge 0$. If Ef = 0 then the proof is finished. If not then $\varphi = \frac{f}{Ef} \in \mathcal{D}$ and since $(W^g, g \in \Pi)$ tends to equilibrium we have

$$\|W^g \varphi - 1\| \to 0 \qquad \text{as} \quad g \to +\infty. \tag{3}$$

Let $g \in \Pi$. Since $\mathscr{A}_{-\infty} \subset \mathscr{A}_{-g}$ and φ is $\mathscr{A}_{-\infty}$ -measurable we have $P^{-g}\varphi = \varphi$.

Hence

$$W^{g} \varphi = W^{g} \circ P \varphi = P \circ U^{-g} \circ P \varphi = P \circ U^{-g} \varphi = U^{-g} \circ P^{-g} \varphi = U^{-g} \varphi$$

and so (3) implies

$$\|\varphi - 1\| = \|U^{-g}\varphi - 1\| \to 0$$
 as $g \to +\infty$.

Therefore $\varphi = 1$ and so f is constant.

Sufficiency. Let Φ be a K-action of \mathbb{Z}^2 on (X, \mathcal{B}, μ) and let \mathcal{A} be a corresponding K- σ -algebra.

In order to show that Φ is an *IR*-action we consider $P = E^{\mathscr{A}}$ and $W^g = P \circ U^{-g}$, $g \in \Pi$. Since $\mathscr{A} \subset \Phi^g \mathscr{A}$, $g \in \Pi$ the equality (1) implies $\{W^g, g \in \Pi\}$ is a semigroup.

The properties (a) and (b) are obvious.

It has been checked in ref. 2 that (e) and (f) are also fulfilled where one should substitute $\Lambda = P$.

Now let us suppose $f \in \ker \bigcap_{g \in \mathbb{Z}^2} PU^g$. Hence applying (2) we have

$$P \circ U^g f = U^g \circ P^g f = U^g \circ E^{\mathscr{A}_g} f = 0$$

and therefore $E^{\mathscr{A}_g} f = 0$, $g \in \mathbb{Z}^2$. Now the property (iii) and the Doob martingale convergence theorem say that f = 0, i.e., (c) is satisfied.

In order to check (d) it is enough to assume that m = 0. For any $f \in L^2(X, \mu)$ we have by (1)

$$\begin{split} \|U^{(0,n)} \circ W^{(0,n)} f - U^{(1,-n)} \circ W^{(1,-n)} f \| \\ &= \|U_{S}^{n} \circ E^{\mathscr{A}} \circ U_{S}^{-n} f - U_{T} \circ U_{S}^{-n} \circ E^{\mathscr{A}} \circ U_{T}^{-1} \circ U_{S}^{n} f | \\ &= \|E^{S^{-n}\mathscr{A}} f - E^{T^{-1}S^{n}\mathscr{A}} f \|, \qquad n \ge 1. \end{split}$$

Applying (ii') and the Doob theorem mentioned above we get (d).

ACKNOWLEDGMENTS

The second author was supported by KBN Grant 5P03A0271.

REFERENCES

- 1. J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahr. Verw. Gebiete 25:11-30 (1972).
- M. Courbage and B. Kamiński, Intrinsical randomness of Kolmogorov Z^d-actions on a Lebesgue space, J. Stat. Phys. 97:781–792 (1999).
- S. Goldstein, Space-time ergodic properties of systems of infinitely many independent particles, Comm. Math. Phys. 39:303–327 (1975).
- R. K. Goodrich, K. Gustafson, and B. Misra, On K-flows and irreversibility, J. Stat. Phys. 43:317–320 (1986).
- 5. E. de Jonge, Conditional expectation and ordering, Ann. Probab. 7:179-183 (1979).
- B. Kamiński, Mixing properties of two-dimensional dynamical systems with completely positive entropy, *Bull. Polish Acad. Sci. Math.* 28:453–463 (1980).
- B. Kamiński, The theory of invariant partitions for Z^d-actions, Bull. Polish Acad. Sci. Math. 29:349–362 (1981).